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Note 

Accelerating the Convergence of an 
Iterative Method for Derivatives of Eigensystems 

1. INTRODUCTION 

Many problems in engineering and physical sciences require numerical com- 
putation of derivatives of eigenvalues and eigenvectors of parameter-dependent 
matrices [I, 21. The iterative method proposed by Rudisill and Chu [Z], and later 
refined by Andrew [ 1, 31, is still much slower than the direct methods of [2] and 
[4]. The main contribution of this paper is to show that a dramatic improvement 
in efficiency of the iterative method may be made by means of the s-algorithm, 
making the method competitive with direct methods even for relatively full 
matrices, while retaining all advantages of the iterative method. Numerical tests 
carried out in Section 3 show the accuracy of this method. Some refinements 
suggested by Andrew [ 1, 31 are also tested numerically. 

2. THE ITERATIVE METHOD 

Let the y2 x n matrix A and its eigenvalues li and corresponding eigenvectors xi 
depend smoothly on m real parameters P,,..., P,. We are concerned with com- 
puting local numerical values of Ii,i and slj (j= 1, 2,..., m), where the subscript ,.i 
denotes partial differentiation with respect to Z’j. Let the eigenvalues be labelled so 
that 

and let the eigenvectors satisfy the normalizing condition 

xpxj= I (i = 1, 2 )..., n), (2) 

where the asterisk denotes complex conjugate transpose. 
The basic algorithm of [2] for computing ll.i and x~,~ involves the iterative 

scheme 

p(k) = x:A,~.Y, + xf(A -cl, Z) u(k), (3a) 
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u(k+ l)= {(A,j-p(k)l)x, -Au(k)}/l,. 
230 

(3b) 
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Andrew [3] has shown that p(k) and u(k) will converge to /?l,.i and .x,.~ as k-+ ‘X 
when ll.,j # /J2/, the rate of convergence of (3) being at least 0(\&/L,l”)~ 

In many optimization problems (see [S] and [6]), IV1 and AZ are complex con- 
jugates. In this case (3) will not converge for most choices of u(0). Andrew’s 
analysis [ 1 ] for the asymptotic error expansion of (3) !eads to the suggested initial 
vector 

which under the condition A1 #,I2 and IA,1 > l/1,1 gives 

The numerical results in Section 4 support this result. However, with the use of the 
s-algorithm, this proposed starting vector is not required. 

3. THE EPSILON ALGORITHM 

The c-algorithm (see [7, 8, 91) involves a sequence of numbers S,; S1, S2..... 
defined in the two-dimensional “e-array” 

They are related by means of 

&‘k)l = 0. &b”’ = Sk. 

1 
&:~l=&:k:l’+(E~~+l)_Etk,). 

It is known [7, lo] that if Sk has the form 

s,=s+ .f aiy; with l,vll > ly,l > ..~ > /ypl, 
i=l 

then 

E$) = s. 
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In this case, we require the vector extension of the s-algorithm as given in [S]. 
From Eqs. (7) and (8) of [3], it follows that if u(O) is chosen to satisfy 

xl*u(O) = 0, (9) 

then 

k 

with 1?1> ... >iFl> ... >l?i, (10) 

when inequality in (1) is strict, where the 11, are constant vectors. Consequently for 
each component of the vector u(k) the error has exact@ the same dependence on k as 
in (7). To generate (6) for the vector case, we use the Samelson inverse of a vector. 
Suppose the vector 

u = (24, ) u2 )...) un), 

then the Samelson inverse of u is defined to be 

U -l = (Ilull:)-‘(~l, :2,..., fin), (11) 

where Ui is the complex conjugate of ui. From (7) and (10) it follows that, with 
exact arithmetic, the s-algorithm when applied to the iterative scheme of Rudisill 
and Chu will yield the exact solution in the (2n - 2)th column of the s-table in (5). 
The number of iterations required to generate the exact result is (2N- 2), where N 
is the dimension of the matrix A. Note that the odd-numbered columns of (5) are 
only to aid computations (sometimes called the work columns) and have no 
significance. That is, only the even numbered columns in (5) have significance for 
our result. In fact the rate of convergence in the 2rth column is o((A,.+,/n,l”) for 
each r =O, 1,2,..., (n -2). The performance of the algorithm in the presence of 
round-off errors is investigated in the next section. Values of x~,.~ obtained by the 
s-algorithm were used to compute JI,i using (3a). 

4. NUMERICAL RESULTS 

All computations in this section are carried out on a VAX-l l/780 computer using 
the software package “MATLAB” which uses double precision (effectively about 16 
significant decimal digits) and prints results in a floating point format of 16 digits. 
We define “exact” throughout this section as 15 digit floating point accuracy of the 
numerical solution compared with the analytic solution. 

(a) EXAMPLE 1. Consider the Nth-order lower Hessenberg matrix A= (ai,j) 
where, for some (real or complex) parameter, a, 

ai,j = G(‘+ l -j all i2j- 1. (1.2) 
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A closed form solution for the eigenvalues and corresponding eigenvectors of .4 
may be found in [ 111. In fact 

where [N/S] is the largest integer not exceeding hi/Z. By appropriate choice of cx 
and N, we can study both ill-conditioned and well-conditioned systems. By choos- 
ing CI small or N large, the eigenvalues in ( 13) can be made very close together and 
thus the case where A is close to a matrix with repeated eigenvalues may be 
investigated. Ill-conditioning may also occur when a is large because some elements 
of A will be very large compared to the eigenvalues of A. Round-off errors may be 
larger in this situation. 

Table I summarizes the numerical testing carried out for computing Ji-j and .fl., 
for various different values of r* and N. Good accuracy was obtained with 
significantly less than (2N-2) iterations. This is because from (13) E,Cni,zl + 1 = 

TABLE I 

N 

Number of iterations required 
Number of iterations required to yield at least r-figure 

to satisfy ( 14) with TOL = 10 m6 accuracy with the E-algorithm 

u(0) = 0.0 u(0) = [A,[.X, - (-Y:.~,,s,).‘i,].i(~l - i,) i= 10 I= 14 

0.000 1 16 16 5 
-1 1.0 15 4 5 

20.0 15 14 5 

0.05 
8 1.0 

10.0 

41 
43 
44 

41 
17 
43 

13 
13 
9 

0.01 87 87 
12 1.0 82 32 

5.0 82 81 

0.1 136 
16 1.0 129 

3.0 129 

0.05 
20 1.0 

2.5 

194 
185 
185 

0.25 288 
25 1.0 265 

2.0 265 

136 
51 

128 

194 
73 

183 

289 
105 
263 

2 i 
21 
17 

31 
31 
21 

43 
39 
39 

57 
49 
49 

3 
5 
5 

13 
13 
i3 

11 
3 
2i 

45 
43 
43 
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apq+2= ..’ = 1, = 0 and hence OIAl,v,,z, + i /A,] = 0 for all N. This means that 
with exact arithmetic the (N-2)th column (if N is even) or the (N- 3)th column 
(if N is odd) should yield the exact solution in the first row. In practice round-off 
errors limit accuracy especially when N is large or the problem is ill-conditioned. 
However, accuracy improved quite rapidly with a few extra iterations and for later 
columns improved rapidly down the column. 

For the well-conditioned systems, the rate of convergence improved from 
@l~JW) to W~31Uk) when (4) was used instead of u(0) =O.O. This is as 
predicted by the theory of [l]. For the ill-conditioned case, this choice of u(O) 
offered no special advantage, possibly because & and 1, are very close in our 
ill-conditioned test examples. 

In Table I, “t-figure” accuracy means that the error 6~,,~ in the computed value 
of ~i,~ satisfied liSzr,,Jl sI < 10-l /x,,J r and the error 6A,,i in the computed value of 
;l,,j also satisfied 161r.J < lo-’ lJ.,,J. For N320 the s-algorithm had not achieved 
14 significant figure accuracy when iteration was arbitrarily terminated at k = 61, 
though more than 10 figure accuracy was achieved. For calculations without the 
s-algorithm, iteration was continued until, for a parameter TOL, 

IP(~)-PW- 1)l <TOL and Ilu(k)- u(k- 1)112 < TOL. (14) 

(b) EXAMPLE 2. In the next numerical example, we consider a case where the 
dominant eigenvalues are a complex conjugate pair and we combine the method of 
origin shift with the s-algorithm. 

Consider the 8 x 8 matrix 

B= 
-Cl-d -D, 

I 1 -uI ’ 

where cr is a shift parameter (0 real), C, and D, are the 4 x 4 matrices given in [ 121 
and I is the 4 x 4 identity matrix. From [ 121 it follows that B has eigenvalues 

A(1,2J = -c + i - > /J,(3.4) = -g _+ pi, ;1i5.6’ = 1 - u-p k pi, 

A(7) = -0 A’S)= 1 -0-p. (15) 

Different (T in (15) give different dominant eigenvalues. With 0 = - 1 for example, 
the largest eigenvalues of (15) are 1’3,4’ followed by L(5,6) for all values of p E (1, 3). 
An eigenvector corresponding to the eigenvalues 1(3.4’ is 

x = [ -/?‘, ip3, /3’, i/l, if13, -/?“, i/l, 11’. 

Different values of BE (1, 3) were chosen for numerical testing with this shift 
parameter. The method of origin shift as suggested by Andrew [3] was found to be 
a useful device in accelerating the rate of convergence of the iterative scheme when 
the s-algorithm is not used, the increase in convergence rate for well-conditioned 
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problems being in good agreement with the predictions of [3]. For fi near 1.0, the 
problem is very ill-conditioned because L’l’ 1 ,I(31 2: ic5’ and 1’“’ z i(d) .= ,I’“’ and 
the optimal origin shift [3] offers no special advantage. Convergence of the even 
column of the c-algorithm was also found to be much faster when the optimal 
origin shift was used. However, for well-conditioned problems, both the optimal 
origin shift and the shift CJ = -1 gave the “exact” solution after 14 = 2N - 2 
iterations, as predicted by the theory. 

Recently the power of the &-algorithm has been significantly extended by various 
generalizations such as [ 131. Also several alternative schemes (see [ 14, 15: 161) 
have been proposed which assume a different asymptotic form for the sequence. The 
reason for the special appropriateness of the c-algorithm for our problem is that the 
error term of (10) has exactly the same form as in (7). This is not true for the 
schemes proposed in [14, 15, 161 and our numerical experience confirms that they 
perform much less well in this particular case than the &-algorithm. (See [17] for 
details. i 
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